Home /
HU, Jiazhi
E-mail: hujz(AT)pku.edu.cn
Lab Homepage: http://hulab.pku.edu.cn
Personal Homepage:
Aug. 2012, College of Life Sciences, Peking University, Beijing, China
Ph. D. in Biochemistry and Molecular Biology. Supervisor: Dr. Daochun Kong.
Professional Experience
Oct. 2016, Center for Life Sciences and College of Life Sciences, Peking University
Assistant professor

Sep. 2012, Program in Cellular & Molecular Medicine, Boston Children’s Hospital, Boston, MA, USA
Research Fellow in Dr. Frederick Alt’s lab.
Honors and Awards
2022 Teaching Award-Outstanding Young Scholar
2021 Zheng Changxue Teaching Award
2018 Qiu Shi Outstanding Young Scholar
2018 Bayer Scholar
2018 Green Leaf Biomedical Outstanding Young Scholar
2017 Yi-Fang Scholar
2016 Harvard Chinese Life Science Research Award
2014 Cancer Research Institute Irvington Fellowship
2012 Ray Wu Prize
2012 Beijing Outstanding Graduate Student
2012 Excellent Graduate Thesis of Peking University
2012 Outstanding Graduate of Peking University
2012 Leica Top Grade Scholarship
2012 Johnson & Johnson Asia Outstanding Graduate Thesis Award in Bio-tech
Research Interests
Lymphocyte receptors, including B cell receptor/antibody and T cell receptor, show high diversity during generation and high specificity during antigen recognition. Lymphocyte receptor-mediated adaptive immune system can efficiently eliminate pathogens, but genome instability can also convert normal lymphocytes into lymphomas or leukemia. My major research interest is immunogenomics and human diseases, to be more specific, tumors. Immunogenomics refers to a new branch of immunology that relies on genomics analyzing methods to study important immune processes. Immunogenomics reinforces our knowledge about adaptive immunity, the biggest resource of human genetic variations.

Aim 1. To study the regulatory mechanism during generation of diverse lymphocyte receptors.

Aim 2. To study the mechanism of antigen and lymphocyte receptor recognition.

Aim 3. To study the development of lymphoid tumors and screen for neoantigen for cancer therapy.

Aim 4. To study the genome instability during genome editing.
Representative Peer-Reviewed Publications
SELECTED PUBLICATIONS (# co-first authors, *co-corresponding authors)
Wu J#, Liu Y#, Zhangding Z#, Liu X#, Ai C, Gan T, Liang H, Guo Y, Chen M, Liu Y, Yin J, Zhang W & Hu J (2023). Cohesin maintains replication timing to suppress DNA damage on cancer genes. Nature Genetics. 2023.Aug; 55(8):1347-1358. doi:10.1038/s41588-023-01458-z.

Yin J#, Fang K#, Gao Y#, Ou L, Yuan S, Xin C, Wu W, Wu W-W, Hong J, Yang H*, & Hu J* (2022) Safeguarding genome integrity during gene-editing therapy of age-related macular degeneration. Nature Communications 13(1):7867. doi: 10.1038/s41467-022-35640-4.

Yin S#, Zhang M#, Liu Y#, Sun X, Chen X, Yang L, Huo Y, Yang J, Zhang X, Han H, Zhang J, Li G, Xiao M, Guan Y, Liu M, Hu J*, Wang L* & Li D* (2022) Engineering of efficiency enhanced Cas9 and base editors with improved gene therapy efficacies. Molecular Therapy S1525-0016(22)00672-4. doi: 10.1016/j.ymthe.2022.11.014.

Wu J#, Zou Ziye#, Liu Y#,*, Liu X, Zhangding Z, Xu M* & Hu J* (2022). CRISPR/Cas9-induced structural variations expand in T lymphocytes in vivo. Nucleic Acids Research 50(19):11128-11137. doi: 10.1093/nar/gkac887.

Xin C#, Yin J#, Yuan S, Ou L, Liu M, Zhang W & Hu J (2022). Comprehensive assessment of miniature CRISPR-Cas12f nucleases for gene disruption. Nature Communications 13(1):5623. doi: 10.1038/ s41467-022-33346-1.

Chen X#, Niu X#, Liu Y#, Zheng R, Yang L, Lu J, Yin S, Wei Y, Pan J, Sayed A, Ma X, Liu M, Jing F, Liu M, Hu J*, Wang L* & Li D* (2022). Long-term correction of haemophilia B through CRISPR/Cas9 induced homology-independent targeted integration. J Genet Genomics S1673-8527(22)00159-X. doi: 10.1016/j.jgg.2022.06.001.

Yin J & Hu J (2022). The origin of unwanted editing byproducts in gene editing. Acta Biochim Biophys Sin 54(6):1-15. doi: 10.3724/abbs.2022056.

Xie X#, Gan T#, Rao B#, Zhang W, Panchakshari RA, Yang D, Ji X, Cao Y, Alt FW, Meng F-L* & Hu J* (2022). C-terminal deletion-induced condensation sequesters AID from IgH targets in immunodeficiency. EMBO J 41(11):e109324. doi: 10.15252/embj.2021109324.

Yin J#, Lu R#, Xin C#, Wang Y, Ling X, Li D, Zhang W, Liu M, Xie W, Kong L, Si W, Wei P, Xiao B, LEE HY, Liu T & Hu J (2022). Cas9 exo-endonuclease eliminates chromosomal translocations during genome editing. Nature Communications 8;13(1):1204. doi: 10.1038/s41467-022-28900-w.

Liu Y#,*, Yin J#, Gan T#, Liu M, Xin C, Zhang W & Hu J* (2022). PEM-seq comprehensively quantifies DNA repair outcomes during gene-editing and DSB repair. STAR Protocols 3(1), 101088. doi: 10.1016/j.xpro.2021.101088

Gan T, Wang Y, Schatz DG & Hu J (2021). RAG2 abolishes RAG1 aggregation to facilitate V(D)J recombination. Cell Reports 37, 209824. doi:10.1016/j.celrep.2021.109824

Liu M#, Zhang W#, Xin C#, Yin J, Shang Y, Ai C, Li J, Meng F-L & Hu J (2021). Global detection of DNA repair outcomes induced by CRISPR-Cas9. Nucleic Acids Research 49(15):8732-8742. doi: 10.1093/nar/gkab6 86.

Zhang W#, Yin J#,*, Zhang-Ding Z, Xin C, Liu M, Wang Y, Ai C & Hu J (2021). In-depth assessment of the PAM compatibility and editing activities of Cas9 variants. Nucleic Acids Research gkab507. doi: 10.1093/nar/gkab507.

Yin J#, Liu M#, Liu Y#, Wu J, Gan T, Zhang W, Li Y, Zhou Y & Hu J (2019). Optimizing genome editing strategy by primer-extension-mediated sequencing. Cell Discovery 5, 819. doi: 10.1038/s41421-019-0088-8.

Zuo E#, Huo X#, Yao X#, Hu X#, Sun Y#, Yin J#, He B, Wang X, Shi L, Ping J, Wei Y, Ying W, Wei W, Liu W, Tang C, Li Y, Hu J* & Yang H*. (2017). CRISPR/Cas9-mediated targeted chromosome elimination. Genome Biology 18(1):224. doi: 10.1186/s13059-017-1354-4.

Lin SG#, Ba Z#, Du Z#, Zhang Y, Hu J* & Alt FW*. (2016). A highly sensitive and unbiased approach for elucidating antibody repertoires. Proc Natl Acad Sci USA 113(28):7846-51. doi:10.1073/pnas.1608649113.

Hu J#, Meyers RM#, Dong J, Panchakshari RA, Alt FW* & Frock RL*. (2016). Detecting DNA double-stranded breaks in mammalian genomes by linear amplification-mediated high-throughput genome-wide translocation sequencing. Nature Protocols 11(5): 853-71. doi: 10.1038/nprot.2016.043.

Hu J#, Zhang Y#, Zhao L, Frock RL, Du Z, Meyers RM, Meng F-L, Schatz DG, & Alt FW. (2015). Chromosomal loop domains direct the recombination of antigen receptor genes. Cell 163(4): 947-59. doi: 10.1016/j.cell.2015.10.016.

Frock RL#, Hu J#, & Alt FW. (2015). Mechanisms of recurrent chromosomal translocations. In book: Chromosomal Translocations and Genome Rearrangements in Cancer. Springer International Publishing, ISBN: 978-3-319-19983-2. doi: 10.1007/978-3-319-19983-2

Frock RL#, Hu J#, Meyers RM, Ho Y-J, Kii E, & Alt FW. (2015). Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nature Biotechnology 33(2):179-86. doi: 10.1038/ nbt.3101.

Hu J#, Tepsuporn S#, Meyers RM, Gostissa M*, & Alt FW*. (2014). Developmental propagation of V(D)J recombination-associated DNA breaks and translocations in mature B cells via dicentric chromosomes. Proc Natl Acad Sci USA 111(28): 10269-74. doi: 10.1073/pnas.1410112111.

Tepsuporn S#, Hu J#, Gostissa M*, & Alt FW*. (2014). Mechanisms that can promote peripheral B-cell lymphoma in ATM-deficient mice. Cancer Immunol. Res. 2(9): 857-66. doi: 10.1158/2326-6066. CIR-14-0090.

Hu J, Sun L, Shen F, Chen Y, Hua Y, Liu Y, Zhang M, Hu Y, Wang Q, Xu W, Sun F, Ji J, Murray JM, Carr AM, & Kong D. (2012). The intra-S phase checkpoint pathway targets Dna2 to prevent stalled replication forks from reversing. Cell 149(6): 1221-32. doi: 10.1016/j.cell.2012.04.030.
Immunology; Immunology Experiments
Laboratory Introduction
Immunogenomics and human diseases. Our major interests are: A. the safety assessment and improvement of genome editing tools; B. DNA replication, transcription and genome stability during these DNA metabolism activities in lymphocytes; C. the screening and engineering of antibody against disease-related antigens.
Laboratory Phone:62744611