北京大学 | ENGLISH
师资力量
按拼音排序【正、副高职称】
当前位置: 师资力量 > 在职教师 > 按拼音排序
何光明
邮  箱: heguangming(AT)pku.edu.cn
职  称:
副研究员
办公室地址: 北京市海淀区颐和园路5号,北京大学,王克桢楼,100871
实验室地址: 北京市海淀区颐和园路5号,北京大学,王克桢楼,100871
实验室主页: http://
个人主页: http://
个人简历
教育经历
2003.8 - 2006.7 , 理学博士 , 遗传学 , 复旦大学
2000.9 - 2003.7 , 农学硕士 , 作物遗传育种 , 中国农业大学
1990.9 - 1994.6 , 理学学士 , 生物技术 , 东北农业大学
工作经历
2010.7 - 至今 , 副研究员 , 北京大学
2009.1 - 2010.6 , 博士后 , 美国耶鲁大学
2006.8 - 2008.12 , 研究助理 , 北京生命科学研究所
1994.7 - 2000.8 , 研究实习员 , 湖北省农业科学院
科研领域描述
植物杂种优势形成的分子机制
  植物杂种优势通常最明显地表现在与亲本相比,杂交子一代在生长或生物量上的优势。细胞是生物体行使功能的最基本单元,细胞分裂和周期的调控通过影响细胞数量和大小最终决定生长发育和生物量的积累。我们将从细胞层面解析植物生长或生物量杂种优势形成的分子机制,并进一步探讨其与产量杂种优势之间的关系。
  植物生长发育与免疫反应之间往往存在着动态平衡关系,植物激素调控网络在其中起重要作用。我们还将从生物胁迫响应相关植物激素通路及其与促生长类植物激素通路之间的交叉会话出发,深入探讨植物抗病杂种优势的分子机制及其与生长杂种优势之间的关系。
代表性论文
*corresponding authors

31. He, G., and Deng, X.W.* (2018). Death Signal Transduction: Chloroplast-to-Mitochondrion Communication Regulates Programmed Cell Death in Plants (in Chinese). Chinese Bulletin of Botany 53, 1-4.
30. Yang, H., Wang, X., Wei, Y., Deng, Z., Liu, H., Chen, J., Dai, L., Xia, Z., He, G.* and Li, D.* (2018). Transcriptomic analyses reveal molecular mechanisms underlying growth heterosis and weakness of rubber tree seedlings. BMC Plant Biol 18: 10.
29. Yang, M., Wang, X., Ren, D., Huang, H., Xu, M., He, G.*, and Deng, X.W.* (2017). Genomic  architecture of biomass heterosis in Arabidopsis. Proc Natl Acad Sci U S A 114, 8101-8106.
28. Li, D.*, Wang, X., Deng, Z., Liu, H., Yang, H., and He, G.* (2016). Transcriptome analyses reveal molecular mechanism underlying tapping panel dryness of rubber tree (Hevea brasiliensis). Sci Rep 6, 23540.
27. He, G.*, He, H., and Deng, X.W.* (2016). The transcriptomic basis of heterosis in rice (in Chinese). Chin Sci Bull 61, 3850–3857.
26. Yang, M., Wang, X., Huang, H., Ren, D., Su, Y., Zhu, P., Zhu, D., Fan, L., Chen, L., He, G.*, and Deng, X.W.* (2016). Natural variation of H3K27me3 modification in two Arabidopsis accessions and their hybrid. J Integr Plant Biol 58, 466-474.
25. He, G. and Deng, X.W. (2016). On the molecular basis of heterosis in plants: opportunity and challenge (in Chinese). China Basic Science1, 28-34.
24. Yang, L., Li, B., Zheng, X.Y., Li, J., Yang, M., Dong, X., He, G.*, An, C.*, and Deng, X.W.* (2015). Salicylic acid biosynthesis is enhanced and contributes to increased biotrophic pathogen resistance in Arabidopsis hybrids. Nat Commun 6, 7309.
23. Wang, Y., Fan, X., Lin, F., He, G., Terzaghi, W., Zhu, D., and Deng, X.W. (2014). Arabidopsis noncoding RNA mediates control of photomorphogenesis by red light. Proc Natl Acad Sci U S A 111, 10359-10364.
22. Wang, Y., Wang, X., Deng, W., Fan, X., Liu, T.T., He, G., Chen, R., Terzaghi, W., Zhu, D., and Deng, X.W. (2014). Genomic features and regulatory roles of intermediate-sized non-coding RNAs in Arabidopsis. Mol Plant 7, 514-527.
21. He, G.*, Chen, B., Wang, X., Li, X., Li, J., He, H., Yang, M., Lu, L., Qi, Y., and Deng, X.W.* (2013). Conservation and divergence of transcriptomic and epigenomic variation in maize hybrids. Genome Biol 14, R57.
20. He, G., He, H., and Deng, X.W. (2013). Epigenetic variations in plant hybrids and their potential roles in heterosis. J Genet Genomics 40, 205-210.
19. He, G., and Deng, X.W. (2013). Chromatin and Gene Expression Mechanisms in Hybrids. In Polyploid and Hybrid Genomics, John Wiley & Sons, Inc., pp. 323-333.
18. Liu, T.T., Zhu, D., Chen, W., Deng, W., He, H., He, G., Bai, B., Qi, Y., Chen, R., and Deng, X.W. (2013). A global identification and analysis of small nucleolar RNAs and possible intermediate-sized non-coding RNAs in Oryza sativa. Mol Plant 6, 830-846.
17. Deng, X.W., Wang, H., Tang, X., Zhou, J., Chen, H., He, G., Chen, L. and Xu, Z. (2013). Hybrid rice breeding welcomes a new era of molecular crop design (in Chinese). Scientia Sinica Vitae 43, 864–868,
16. Shen, H., He, H., Li, J., Chen, W., Wang, X., Guo, L., Peng, Z., He, G., Zhong, S., Qi, Y., Terzaghi, W., and Deng, X.W. (2012). Genome-wide analysis of DNA methylation and gene expression changes in two Arabidopsis ecotypes and their reciprocal hybrids. Plant Cell 24, 875-892.
15. He, G., Elling, A.A., and Deng, X.W. (2011). The epigenome and plant development. Annu Rev Plant Biol 62, 411-435.
14. Li, J., Li, G., Gao, S., Martinez, C., He, G., Zhou, Z., Huang, X., Lee, J.H., Zhang, H., Shen, Y., Wang, H., and Deng, X.W. (2010). Arabidopsis transcription factor ELONGATED HYPOCOTYL5 plays a role in the feedback regulation of phytochrome A signaling. Plant Cell 22, 3634-3649.
13. He, G., Zhu, X., Elling, A.A., Chen, L., Wang, X., Guo, L., Liang, M., He, H., Zhang, H., Chen, F., Qi, Y., Chen, R., and Deng, X.W. (2010). Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22, 17-33.
12. Chen, F., He, G., He, H., Chen, W., Zhu, X., Liang, M., Chen, L., and Deng, X.W. (2010). Expression analysis of miRNAs and highly-expressed small RNAs in two rice subspecies and their reciprocal hybrids. J Integr Plant Biol 52, 971-980.
11. Wang, X., Elling, A.A., Li, X., Li, N., Peng, Z., He, G., Sun, H., Qi, Y., Liu, X.S., and Deng, X.W. (2009). Genome-wide and organ-specific landscapes of epigenetic modifications and their relationships to mRNA and small RNA transcriptomes in maize. Plant Cell 21, 1053-1069.
10. Zha, X., Luo, X., Qian, X., He, G., Yang, M., Li, Y., and Yang, J. (2009). Over-expression of the rice LRK1 gene improves quantitative yield components. Plant Biotechnol J 7, 611-620.
9. Zhang, H., He, H., Chen, L., Li, L., Liang, M., Wang, X., Liu, X., He, G., Chen, R., Ma, L., and Deng, X.W. (2008). A Genome-Wide Transcription Analysis Reveals a Close Correlation of Promoter INDEL Polymorphism and Heterotic Gene Expression in Rice Hybrids. Mol Plant 1, 720-731.
8. Hong, F., Attia, K., Wei, C., Li, K., He, G., Su, W., Zhang, Q., Qian, X., and Yang, J. (2007). Overexpression of the rFCA RNA Recognition Motif Affects Morphologies Modifications in Rice (Oryza sativa L.). Bioscience Rep 27, 225-234.
7. He, G., Luo, X., Tian, F., Li, K., Zhu, Z., Su, W., Qian, X., Fu, Y., Wang, X., Sun, C., and Yang, J. (2006). Haplotype variation in structure and expression of a gene cluster associated with a quantitative trait locus for improved yield in rice. Genome Res 16, 618-626.
6. Su, W., Lin, C., Wu, J., Li, K., He, G., Qian, X., Wei, C., and Yang, J. (2006). Molecular cloning and expression of a cDNA encoding Lon protease from rice (Oryza sativa). Biotechnol Lett 28, 923-927.
5. Su, W., Wu, J., Wei, C., Li, K., He, G., Attla, K., Qian, X., and Yang, J. (2006). Interaction between programmed cell death 5 and calcineurin B-like interacting protein kinase 23 in Oryza sativa. Plant Sci 170, 1150-1155.
4. Li, K., Yang, J., Attia, K., Su, W., He, G., and Qian, X. (2005). Cloning and characterization of OsORC2, a new member of rice origin recognition complex. Biotechnol Lett 27, 1355-1359.
3. Attia, K., Li, K., Wei, C., He, G., Su, W., and Yang, J. (2005). Overexpression of the OsPDCD5 Gene Induces Programmed Cell Death in Rice. J Integr Plant Biol 47, 1115-1122.
2. Attia, K., Li, K., Wei, C., He, G., Su, W., and Yang, J. (2005). Transformation and Functional Expression of the rFCA-RRM2 Gene in Rice. J Integr Plant Biol 47, 823-830.
1. He, G., Sun, C., Fu, Y., Fu, Q., Zhao, K., Wang, C., Zhang, Q., Ling, Z., and Wang, X. (2004). Pyramiding of senescence-inhibition IPT gene and Xa23 for resistance to bacterial blight in rice (Oryza sativa L.) (in Chinese). Acta Genetica Sinica 31, 836-841.
实验室简介
[友情链接]
北大生科微信公众号 生声不息微信公众号
联系我们 | 地理位置
北京大学生命科学学院 版权所有 地址:北京市海淀区颐和园路5号金光生命科学大楼