北京大学 | ENGLISH
师资力量
按拼音排序【正、副高职称】
当前位置: 师资力量 > 在职教师 > 按拼音排序
徐冬一
邮  箱: Xudongyi(AT)pku.edu.cn
职  称:
研究员
办公室地址: 北京市海淀区颐和园路5号,北京大学,金光生命科学大楼,100871
实验室电话: 62767767
实验室地址: 北京市海淀区颐和园路5号,北京大学,金光生命科学大楼,100871
个人简历
教育经历
1999-2005, 理学博士, 生命科学, 北京大学
1995-1999, 理学学士, 生命科学, 北京大学
工作经历
2011 - 至今 , 研究员 , 北京大学,生命科学学院
2005 - 2011 , 博士后 , 美国国立卫生研究院(National Institutes of Health,NIH )
科研领域描述
Dr. Xu received both his B.S. and Ph.D. degree from Peking University in 1999 and 2005, respectively. After postdoctoral training in Dr. Weidong Wang’s laboratory in National Institute on Aging/National Institutes of Health (NIA/NIH), he is currently a tenure-track assistant professor at School of Life Sciences in Peking University. His overall research interest is to discover new protein complexes that participate in DNA/RNA metabolism and to elucidate their molecular mechanisms in inherited human disease.

Cancer arises due to genomic changes, which allow uncontrolled cell proliferation or immortality. Human cellular DNA is constantly bombarded by mutagens from endogenous and exogenous sources, resulting in as many as 1 million individual molecular lesions per cell per day. Cells employ many safeguards and ally DNA replication, gene transcrIption, DNA repair and cell-cycle checkpoints to protect their genomic integrity. Inherited mutations that affect DNA repair genes are strongly associated with cancer-prone clinical syndromes, such as hereditary breast cancer, hereditary nonpolyposis colorectal cancer, Bloom`s syndrome, and Fanconi anemia. Importantly, DNA damage response pathways have become promising targets for novel cancer treatments. Several inhibitors of DNA repair pathways have been developed as clinical anti-cancer agents, such as inhibitors of PARP1, MGMT, CHK1 and CHK2. Thus, basic research to understand DNA repair pathways is crucial not only for advancement of scientific knowledge, but also for cancer prevention and therapy.
Our research is summarized in following areas:
1.Systemically analyzing protein complexes in DNA repair
2.Investigating mechanism of non-homologous end-joining
3.Investigating the functions of new proteins in maintenance of genomic stability.
4.Searching new targets of anti-cancer drug

   本实验室从事与核酸代谢和(/或)人类疾病有关的多蛋白复合物的纯化和功能研究。大部分蛋白在体内是以复合物形式存在,并执行它们的功能的。而且一个蛋白往往可以形成多个复合物,执行多个功能。所以了解蛋白之间的相互作用,对于了解它们的体内功能至关重要。本实验室主要从多蛋白复合物的纯化入手,利用生化、细胞和遗传等手段,研究蛋白及相关复合物的功能机制,来了解核酸代谢的基本过程及与之相关人类疾病。主要从事两个方向的研究:

1、DNA修复与癌症发生及治疗
   癌症是人类最大的疾病之一。它主要是由基因突变引起的细胞非正常生长和迁移。为了维护基因组的稳定性,细胞有一套完整的保护机制,融合了DNA复制、染色体分离、基因转录、DNA修复和细胞周期检查点等过程。相关基因,尤其是DNA修复相关基因的突变往往会引起癌症倾向的遗传病,比如遗传性乳腺癌,Fanconi anemia,Bloom syndrome等等。 DNA修复不光与癌症的形成有关,还与癌症的治疗有关。比如放射治疗及许多化疗药物,就是通过DNA破坏等,达到杀死癌细胞的目的。此外,新近研制的一些抗癌药物,可以直接通过抑制某些DNA修复有关的途径,引起DNA破坏,杀死癌细胞,如PARP1、CHK1 和 CHK2 的抑制剂。而癌细胞往往也能通过改变某些DNA修复相关的途径,产生抗药性。所以了解DNA修复的功能机制,无论是对癌症发病机制的了解,还是对癌症药物的研制及临床治疗癌症都至关重要。

1)蛋白相互作用网络图谱构建
   在DNA修复领域,一个相对完整的蛋白相互作用的网络图谱还没有建立;此外,还有许多重要的DNA修复相关蛋白,还没有发现。这对于DNA修复机制的研究,及癌症的诊治都非常不利。本实验室已经建立了一套低成本、高通量适合的蛋白复合物纯化系统。利用这套系统,本实验室将大规模鉴定新的DNA修复蛋白,并最终建立蛋白相互作用网络图谱。

2)基因功能研究
   反向遗传学是基因功能研究的最主要手段之一。本实验室已经建立了一套DT40细胞基因敲除系统。该系统已经被广泛地应用于DNA修复领域的基因功能研究。利用这套系统,我们将对新鉴定的蛋白,进行深入地功能和机制研究。

2、RNA拓扑异构酶与神经发育疾病
    拓扑异构酶是DNA世界中的“魔术师”。它们能够通过切开--释放拓扑力--重连接的方式,改变DNA的拓扑结构。拓扑异构酶可以释放DNA代谢过程中形成的超螺旋、连锁的DNA分子、以及DNA结等,几乎参与了所有重要的DNA代谢过程,包括DNA复制、修复,基因转录和染色体分离等等。然而,目前并不清楚拓扑异构酶是否也参与了RNA的代谢过程。体内其它基本的核酸代谢酶(包括聚合酶、内切/外切酶、连接酶和解旋酶等)都有相应的DNA和RNA酶,而拓扑异构酶是唯一的例外。第一个DNA拓扑异构酶在40多年前就已经被发现,然而到现在还没有发现过具有生理功能的RNA拓扑异构酶。通常的观点认为RNA不会有复杂的拓扑结构,因为RNA是比较短的线性的单链,所以体内不需要RNA拓扑异构酶。也因此,从来没有人来关注这个问题。现在,随着对RNA研究的深入,人们发现RNA的结构和功能远比原先想象的复杂。不同于DNA,RNA在体内通常以单链存在,并且更具可塑性,所以RNA更容易在分子内和分子间形成复杂的结构,以执行复杂的功能。而且许多RNA需要通过结构的变构,才能执行它们的功能。在这些繁复的RNA结构形成和变构过程中,就有可能产生某些拓扑结构问题,需要RNA拓扑异构酶来解决。

   我们已经鉴定了一个体内的RNA拓扑异构酶,Top3B。该酶是已知的第一个具有生理功能的RNA拓扑异构酶,它在体内与FMRP(Fragile X mental retardation protein)相互作用,并参与它的功能。FMRP与mRNA的翻译和转运有关,它的表达缺失会导致脆性X染色体综合症(Fragile X syndrome,FXS)。该疾病是男性中最常见的遗传性弱智,在人群中的发病率达到了1/2500。到目前为止,还没有非常有效的药物用于治疗该疾病。而Top3B的突变,则会导致精神分裂症和自闭症。该研究至少有以下几项重大意义:一、为RNA结构和功能的研究开辟了一个新的领域;二、阐述了FMRP新的功能机制,为脆性X染色体综合症的治疗提供了新的线索;三、为脆性X染色体综合症及其它神经发育疾病治疗提供了一个极具潜力的药物作用靶目标。

目前的科研兴趣和重点
1、   建立与DNA修复相关的蛋白相互作用网络。
2、   寻找与DNA修复和(/或)人类疾病相关的新蛋白,并研究其功能。
3、   了解RNA拓扑异构酶在RNA代谢中的功能,及与精神分裂症和自闭症等神经发育疾病的关系。


代表性论文
1.Ahmad M, Shen W, Li W, Xue Y, Zou S, Xu D#, Wang W#. Topoisomerase 3β is the major topoisomerase for mRNAs and linked to neurodevelopment and mental dysfunction. Nucleic Acids Res. 2017 Mar 17;45(5):2704-2713 (# co-corresponding author)

2.Feng S, Zhao Y, Xu Y, Ning S, Hou W, Hou M, Gao G, Ji J, Guo R, Xu D#. Ewing Tumor-Associated Antigen 1 Interacts with Replication Protein A to Promote Restart of Stalled Replication Forks. J Biol Chem. 2016 Oct 14;291(42):21956-21962

3. Ahmad M, Xue Y, Lee SK, Martindale JL, Shen W, Li W, Zou S, Ciaramella M, Debat H, Nadal M, Leng F, Zhang H, Wang Q, Siaw GE, Niu H, Pommier Y, Gorospe M, Hsieh TS, Tse-Dinh YC, Xu D#, Wang W#. RNA topoisomerase is prevalent in all domains of life and associates with polyribosomes in animals. Nucleic Acids Res. 2016 Jul 27;44(13):6335-49 (# co-corresponding author)

4. Xing M, Yang M, Huo W, Feng F, Wei L, Jiang W, Ning S, Yan Z, Li W, Wang Q, Hou M, Dong C, Guo R, Gao G, Ji J, Zha S, Lan L, Liang H, Xu D# , Interactome analysis identifies a new paralogue of XRCC4 in non-homologous end joining DNA repair pathway. Nature Communications, 2015, 6:6233  

5. Escribano-Díaz C, Orthwein A, Fradet-Turcotte A, Xing M, Young JT, Tkáč J, Cook MA, Rosebrock AP, Munro M, Canny MD, Xu D#, Durocher D.A# , A Cell Cycle-Dependent Regulatory Circuit Composed of 53BP1-RIF1 and BRCA1-CtIP Controls DNA Repair Pathway Choice. Mol Cell. , 2013 , 49(5):872-83 (# co-corresponding author)

Highlighted by: Science(2013;339:652),Nat Cell Biol. (2013;15:240)and Mol Cell.(2013;49:840)  

6. Xu D.*, Shen W.*, Guo R., Xue Y., Yang J., Sharov A., Srikantan S., Yang J., Fox D., Peng W., Qian Y., Martindale J., Piao Y., Machamer J., Joshi S., Mohanty S., Shaw A., Lloyd T., Brown G., Ko M., Gorospe M., Zou S., Wang W. , Top3β is an RNA topoisomerase that interacts with Fragile X syndrome protein to promote synapse formation. Nature Neuroscience , 2013 , 16, 1238–1247(*co-1st author)

Highlighted by: Nature(v500, page125)and The Scientist(August 6, 2013)

7. Xu D, Muniandy P, Leo E, Yin J, Thangavel S, et al. , Rif1 provides a new DNA binding interface for the Bloom syndrome complex to maintain normal replication. , EMBOJ , 2010 , 29:3140-3155  

8. Hoadley K.A., Xu D, Xue Y, Satyshur K.A., Wang W, and Keck J.L. , Structure and cellular roles of the RMI core complex from the Bloom syndrome dissolvasome. , Structure , 2010 , 18:1149-1158  

9. Guo R*, Xu D*, Wang W , Identification and analysis of new proteins involved in the DNA damage response network of Fanconi anemia and Bloom syndrome. , Methods , 2009 , 48: 72-79(*co-1st author)  

10. Xu D*, Guo R*, Sobeck A, Bachrati CZ, Yang J, et al. , RMI, a new OB-fold complex essential for Bloom syndrome protein to maintain genome stability. , Genes Dev , 2008 , 22: 2843-2855(*co-1st author)

Highlighted by:Nature(456:453-454, 2008), Nature Rev. Mol. Cell.Biol. (9:920, 2008) and Genes & Dev. (22:2737-2742, 2008)  

11. Xu D, Yu X, Guo C, Zhao J , Construction of a non-antibiotic expression system in a marine cyanobacterium Synechococcus sp PCC 7002 and its application in production of oral vaccine against enterotoxin of Escherichia coli. , Journal of Applied Phycology , 2006 , 18: 127-134.  

12. Xu D, Liu X, Guo C, Zhao J , Methylglyoxal detoxification by an aldo-keto reductase in the cyanobacterium Synechococcus sp. PCC 7002. , Microbiology , 2006 , 152: 2013-2021.

13. Xu D, Liu X, Zhao J , FesM, a membrane iron-sulfur protein, is required for cyclic electron flow around photosystem I and photoheterotrophic growth of the cyanobacterium Synechococcus sp. PCC 7002. , Plant Physiol , 2005 , 138: 1586-1595.
实验室简介
[友情链接]
北大生科微信公众号 生声不息微信公众号
联系我们 | 地理位置
北京大学生命科学学院 版权所有 地址:北京市海淀区颐和园路5号金光生命科学大楼