内网

检测到您当前使用浏览器版本过于老旧,会导致无法正常浏览网站;请您使用电脑里的其他浏览器如:360、QQ、搜狗浏览器的极速模式浏览,或者使用谷歌、火狐等浏览器。

下载Firefox
张泽民

邮  箱: zeminz@yahoo.com

职  称:教授

办公室地址:北京市海淀区颐和园路5号,北京大学,综合科研楼,100871

实验室地址:北京市海淀区颐和园路5号,北京大学,综合科研楼,100871

个人主页:http://cancer-pku.cn/

  • 个人简介
  • 代表性论文
  • 实验室简介

个人介绍:

张博士于南开大学获得遗传学学士学位,于美国宾州州立大学获得生物化学与分子生物学博士学位。此外他还在加州大学伯克利分校获得了IT技术的训练,在加州大学旧金山分校的医学实验室完成了博士后训练。 在加入北京大学之前,张博士在著名生物医药公司基因泰克/罗氏(Genentech/Roche)工作了16年,担任癌症基因组学和生物信息学组的首席,致力于应用机器学习和高通量测序等高新技术进行抗癌药靶和生物标记物的发现。他在计算癌症生物学和癌症基因组学的多个方向上都是开拓者、引领者,如世界首例肿瘤全基因组测序即由张博士领导完成。张博士同时也是60个已获得授权的美国专利的发明人,并在目前正在临床试验中的多项癌症治疗药物的分子靶标的原创发现中做出了直接贡献。他同时也是多家国际知名杂志如Cell Systems、Genome Medicine和Cancer Informatics的编委。
1. L. Zhang, Z. Li, K. M. Skrzypczynska, Q. Fang, W. Zhang, S. A. O’Brien, Y. He, L. Wang, Q. Zhang, A. Kim, R. Gao, J. Orf, T. Wang, D. Sawant, J. Kang, D. Bhatt, D. Lu, C-M Li, A. Rapaport, K. Perez, Y. Ye, S. Wang, X. Hu, X. Ren, W. Ouyang, Z. Shen*, J. G. Egen*, Z Zhang*, and X. Yu*. (2020) Single-cell analyses inform mechanisms of myeloid-targeted therapies in colon cancer. Cell, 181:442-459

2. C. Li, B. Liu, B. Kang, Z. Liu, Y. Liu, C. Chen, X. Ren*, and Z. Zhang*. SciBet as a portable and fast single cell type identifier. Nature Communication, 11:1818

3. PCAWG Transcriptome Core Group, C. Calabrese, N. R. Davidson, D. Demircioğlu, N. A. Fonseca, Y. He, A. Kahles, K-V Lehmann, F. Liu, Y. Shiraishi, C. M. Soulette, L. Urban, L. Greger, S. Li, D. Liu, M. D. Perry, Q. Xiang, F. Zhang, J. Zhang, P. Bailey, S. Erkek, K. A. Hoadley, Y. Hou, M. R. Huska, H. Kilpinen, J. O. Korbel, M. G. Marin, J. Markowski, T. Nandi, Q. Pan-Hammarström, C. S. Pedamallu, R. Siebert, S. G. Stark, H. Su, P. Tan, S. M. Waszak, C. Yung, S. Zhu, P. Awadalla, C. J. Creighton, M. Meyerson, B. F. Ouellette, K. Wu, H. Yang, PCAWG Transcriptome Working Group, A. Brazma*, A. N. Brooks*, J. Göke*, G. Rätsch*, R. F. Schwarz*, O. Stegle*, Z. Zhang* & PCAWG Consortium. (2020) Genomic basis for RNA alterations in cancer. Nature, 578:129-136

4. The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. (2020) Pan-cancer analysis of whole genomes. Nature, 578:82–93

5. R. Bernards, E. Jaffee, J. A. Joyce, S. W. Lowe, E. R. Mardis, S. J. Morrison, K. Polyak, C. L. Sears, K. H. Vousden, and Z. Zhang. (2020) A roadmap for the next decade in cancer research. Nature Cancer, 1:12-17

6. R. Yang, S. Cheng, N. Luo, R. Gao, K. Yu, B. Kang, L. Wang, Q. Zhang, Q. Fang, L. Zhang, C. Li, A. He, X. Hu, J. Peng*, X. Ren*, and Z. Zhang*. (2020) Distinct epigenetic features of tumor-reactive CD8+ T cells in colorectal cancer patients revealed by genome-wide DNA methylation analysis. Genome Biology, 21:2

7. F. Liu, Y. Zhang, L. Zhang, Z. Li, Q. Fang, R. Gao, and Z. Zhang. (2019) Systematic comparative analysis of single-nucleotide variant detection methods from single-cell RNA sequencing data. Genome Biology, 20:242

8. Q. Zhang, Y. He, N. Luo, S. J. Patel, Y. Han, R. Gao, M. Modak, S. Carotta, C. Haslinger, D. Kind, G. W. Peet, G. Zhong, S. Lu, W. Zhu, Y. Mao, M. Xiao, M. Bergmann, X. Hu, S. P. Kerkar, A. B. Vogt, S. Pflanz, K. Liu*, J. Peng*, X. Ren*, and Z. Zhang* (2019) Landscape and dynamics of single immune cells in hepatocellular carcinoma. Cell, 179:829-845.

9. Z. Tang, B. Kang, C. Li, T. Chen, and Z. Zhang. (2019) GEPIA2: an enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Research, 47:W556-W560

10. L. Zhang and Z. Zhang. (2019) Recharacterizing tumor-infiltrating lymphocytes by single-cell RNA sequencing. Cancer Immunology Research, 7:1040-1046.

11. L. Zhang, X. Yu, L. Zheng, Y. Zhang, Y. Li, Q. Fang, R. Gao, B. Kang, Q. Zhang, J.Y. Huang, H. Konno, X. Guo, Y. Ye, S. Gao, S. Wang, X. Hu, X. Ren, Z. Shen*, W. Ouyang*, and Z. Zhang*. (2018) Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature, 564:268-272

12. X. Guo, Y. Zhang, L. Zheng, C. Zheng, J. Song, Q. Zhang, B. Kang, Z. Liu, L. Jin,R. Xing, R. Gao, L. Zhang, M. Dong, X. Hu, X. Ren, D. Kirchhoff, H. G. Roider, T. Yan*, and Z. Zhang*. (2018) Global characterization of T cells in non-small cell lung cancer by single-cell sequencing. Nature Medicine, 24:978-985

13. X. Ren*, B. Kang, and Z. Zhang*. (2018) Understanding tumor ecosystems by single-cell sequencing: promises and limitations. Genome Biology, 19:211

14. C. Zheng, L. Zheng, J.-K. Yoo, H. Guo, Y. Zhang, X. Guo, B. Kang, R. Hu, J. Y. Huang, Q. Zhang, Z. Liu, M. Dong, X. Hu, W. Ouyang*, J. Peng*, and Z. Zhang*. (2017) Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing. Cell, 169(7), 1342–1356

15. Z. Tang, C. Li, B. Kang, G. Gao, C. Li, and Z. Zhang. (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Research, 45(W1):W98-W102

16. X. Hu and Z. Zhang. (2016) Understanding the genetic mechanisms of cancer drug resistance using genomic approaches. Trends in Genetics, 32(2):127-37

17. C. Klijn, S. Durinck, …, F. J. de Sauvage, J. Settleman*, S. Seshagiri*, and Z. Zhang* (2015) A comprehensive transcriptional portrait of human cancer cell lines. Nature Biotechnology, 33:305-315

18. S. Jhunjhunwala, Z. Jiang, …, S. Seshagiri, and Z. Zhang (2014) Diverse modes of genomic alterations in hepatocellular carcinoma. Genome Biology, 15:436

19. J. Liu, M. McCleland, …, S. Seshagiri, R. Firestein, and Z. Zhang (2014), Integrated exome and transcriptome sequencing reveals ZAK isoform usage in gastric cancer. Nature Communication, 5:3830

20. O. Mayba, H. N. Gilbert, …, C. Watanabe, and Z. Zhang (2014) Allele specific expression detection in cancer tissues and cell lines by MBASED. Genome Biology, 15:405

21. Z. Zhang (2012), Genomic landscape of liver cancer. Nature Genetics, 44: 1075-1077

22. J. Liu, W. Lee, …, D. S. Shames, Z. Zhang (2012) Genome and transcriptome sequencing of lung cancers reveal diverse mutational and splicing events. Genome Research, 22:2315-2327

23. S. Seshagiri, E. Stawiski, …, T. K. Starr, Z. Zhang, D. A. Largaespada, T. D. Wu and F. J. de Sauvage (2012) Recurrent R-spondin fusions in colon cancer. Nature, 488, 660–664

24. Z. Jiang*, S. Jhunihunwala*, …, H. Stern, S. Seshagiri, Z. Modrusan, D. Ballinger, Z. Zhang (2012) The effects of hepatitis B virus integration into the genomes of hepatocellular carcinoma patients. Genome Research, 22:593-601

25. W. Lee, Z. Jiang, …, Z. Modrusan, S. Seshagiri, and Z. Zhang (2010) The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature, 465:473-477

26. Z. Kan, B. S. Jaiswal, J…, Z. Modrusan, Z. Zhang, D. Stokoe, F. J. de Sauvage, M. Faham and S. Seshagiri. (2010) Diverse somatic mutation patterns and pathway alterations in human cancers. Nature, 466: 869-873

27. N. Kayagaki, Q. Phung, …, J. F. Bazan, Z. Zhang, D. Arnott, and V. M. Dixit. (2007) DUBA: a deubiquitinase that regulates type I interferon production. Science, 318: 1628-1632

28. J. S. Kaminker, Y. Zhang, C. Watanabe, and Z. Zhang. (2007) CanPredict: A computational tool for predicting missense cancer-associated mutations. Nucleic Acids Research, 35: W595-598

我们致力于用前沿的基因组学和生物信息学技术来解决癌症生物学中的重要问题,结合计算(干)和实验(湿)方法来揭示肿瘤发生过程、微环境和对药物响应中的系统变化和具体遗传因素,以推进癌症免疫治疗和靶向治疗的发展。首先,我们应用单细胞测序技术来研究肿瘤微环境,特别是浸润肿瘤免疫细胞的精确组成和功能状态,应用单细胞测序技术来研究肿瘤的异质性以及各种异质性对癌细胞的功能和药敏的影响。第二,我们将尖端生物信息学方法应用到癌症基因组学大数据中,以揭示癌症的亚型、驱动基因以及其他致癌因素的遗传基础,如基因融合、等位基因差异表达、肿瘤特有的转录异构体等,从而发现新型癌症靶点和标记物。第三,我们开发原创性的生物信息学工具来进行单细胞基因组数据和大规模癌症基因组学数据的分析、整合和可视化,为对这些数据的有效挖掘提供基础。

检测到您当前使用浏览器版本过于老旧,会导致无法正常浏览网站;请您使用电脑里的其他浏览器如:360、QQ、搜狗浏览器的极速模式浏览,或者使用谷歌、火狐等浏览器。

下载Firefox